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1. INTRODUCTION 

IN THE last two decades, the problem of flow and heat 
transfer through an annulus with porous walls has attracted 
the attention of mathematicians and engineers ; the problems 
have been studied due to their numerous applications to the 
cases of transpiration cooling, gaseous diffusion, oil field 
operations, boundary layer control, etc. The first closed- 
form solution for flow in a porous annulus when the amount 
of fluid entering through the outer wall is equal to the amount 
of fluid leaving the inner wall, was given by Berman [I]. 
Terril and Shreshtha [2] discussed this problem for the case 
when the walls are of different permeability. The problem of 
laminar non-Newtonian flow through a porous annulus has 
been discussed by Shreshtha (31. Yeroshenko et al. [4] has 
solved the problem of heat transfer in laminar plane channel 
flow with uniform suction or injection by the method of 
separation of variables. Since perturbation techniques are 
impractical to solve the flow and heat transfer problems 
with a moderately large perturbation parameter, we have 
therefore adopted the quasilinearization technique in the 
present problem. 

The method of quasilinearization has been employed by 
Huang [5,6] in the problems of flow in a porous annulus for 
both Newtonian and non-Newtonian fluids. Many appli- 
cations of the method of quasilinearization are found in other 
engineering fields [7, 81. The advantages of this technique 
are : (i) the cross-flow Reynolds number can be chosen arbi- 
trarily, (ii) the computational process converges quad- 
ratically [9], (iii) the basic equation can be used directly 
without much elaboration. 

This note deals with the study of the heat transfer in 
the problem considered by Shreshtha [3] by the method of 
quasilinearization. The behaviour of the temperature profile 
has been studied for different sets of values of Reynolds 
number R, suction parameters A, b and visco-inelastic 
number rr and is shown graphically. 

2. FORMULATION OF THE PROBLEM 

The constitutive equation of an incompressible Reiner- 
Rivlin fluid can be written as 

t,, = -~6,,+2~,d,+4~,d;~d,” (1) 

where 

4, = ;(v,,,+l:J. (2) 

In a three-dimensional cylindrical set of coordinates 
(r, 0, z) the system consists of an annulus with porous walls 
of different permeability with the z-axis as the centre axis. 
The cross-flow velocity of suction at the inner wall (U,) and 
that of injection at the outer wall (U,) are constants. The 
inner wall (Y = a) is maintained at constant temperature T, 
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while the outer wall (Y = b) at constant temperature Tb. A 
laminar steady motion of the non-Newtonian Reiner-Rivlin 
fluid through the annulus with velocity components (u. v, w) 
in the positive directions of axes (r, 0, z) is considered. It is 
also assumed that u is a function of r alone and that fluid 
flow is swirl free and is then independent of 0. 

Using the constitutive equation (1) the equation of con- 
tinuity, momentum equations and the energy equation can 
be written as 

where 

Q, = :!d’. I I (7) 

The boundary conditions on the velocity profile and tem- 
perature are 

u= -u., W = 0, T= T, atr=a 

u = -u,, w = 0, T= Th at r = b. (8) 

For constant wall velocities, there exists a potential function 
f(t), such that the radial component of velocity can be 
expressed as 

u = W(5)/5 I’*]. (9) 

From the continuity equation (3) and expression (9) we get 

(10) 

where the prime denotes differentiation with respect to [ and 
U,f’(<) is the velocity profile of w at z = 0 where cross-flow 
commences. Substituting expressions (9) and (10) into 
equations (4) and (5) and eliminating p from the equations 
obtained we get 

(5f’ + y”‘) + Rcf”f’ -f”‘f) - Rz,U” + 2f”‘f’) = 0. 

(11) 
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NOMENCLATURE 

a radius of the inner wall of the annulus 
A suction at the inner wall of the annulus, 

rlYch/u 
b radius of the outer wall of the annulus 
B suction at the outer wall of the annulus, (/*/U 

G specific heat 
d,, strain rate tensor 
d,” mixed strain rate tensor 
E Eckert number, Y, U/bc,(T,- T,) 
k thermal conductivity 

P hydrostatic pressure 
P Prandtl number, pv ,c,/k 

x 
radial coordinate 
cross-flow Reynolds number, bU/2v, 

T temperature 
T, temperature at the inner wall of the annulus 
T,, temperature at the outer wall of the annulus 
u radial velocity 
(i generalized cross-flow velocity, 1 U,l+ ([U&/b) 
U. constant velocity parameter 
U, radial velocity at the inner wall of the annulus 
U, radial velocity at the outer wall of the annulus 
v azimuthal velocity 

uij covariant derivative of the covariant velocity 
vector 0, 

w axial velocity 
z axial coordinate. 

Greek symbols 
6,, Kronecker delta tensor 
[ dimensionless axial variable, {(U,/V) - (2z/b)} 
8 azimuthal coordinate 
p, Newtonian viscosity 

p2 cross-viscosity 
v, kinematic Newtonian viscosity, p Jp 
v2 kinematic cross-viscosity, p2/p 
5 dimensionless radial variable, (r/b)* 

50 value of 5 at the inner wall of the annulus, (a/b)* 

P density of the fluid 

52 visco-inelastic number, 4v,/b* 

f:, stress tensor 

=J mixed deviatoric stress tensor 
4 dimensionless function of 5 
@ viscous dissipation function 
$ dimensionless function of 5. 

Equation (6) together with equations (9) and (10) suggest (14) can be replaced by the equivalent system of first-order 
the form of the temperature distribution as follows : linearized differential equations as follows : 

Using equation (12) in equation (6), and equating the 
coefficient of (U,/U- 2z/b)2 and the terms independent of 
(U,/U-2z/b) on both sides of the resulting equation, we 
obtain 

~“+;(l-RP/)$‘+;RPf~~+~RP(2~f”’ 

-3Rz*ff”2) = 0 (13) 

+ +R’P(-2tff”+f’f’) = 0 (14) 

The expression of the temperature distribution in the dimen- 
sionless form can be expressed as 

T* ZT s = E(d+C’$). 
h 0 

Boundary conditions (8) can be rewritten as 

f(Ta) = -A, f’(5o) = 0, 4(<;) = $(to) = 0 

f(1) = -R, f’(1) =O, 
1 

+(I) = -= 0 (say), 
E 

(/1(l) = 0. (16) 

3. SOLUTION OF THE PROBLEM 

To replace the differential equations (1 I), (13) and (14) by 
an equivalent system of first-order differential equations, we 
assume velocity and temperature functions and their deriva- 
tives as 

(f,f’,f”,f”‘)= (X,>XZ.X%&) 

(ti,cL’,hdJ’) = (y,,y*,y,,y,). 
(17) 

Using the technique of quasilinearization as given in refs. 
[5, 6, 171 the non-linear differential equations (11), (13) and 

dX’4k+ 1) 1 
p= (5_r2RXI*‘)[Rx~1~(~+‘)-R(xr) 

d5 

_ 27,&9x~+ ‘1 -Rx~‘x’:+ ‘I_ (2 _ Rx(f) 

-2~Rxy’)x’,k+ “1 + 
R 

([-z~Rx(;)) 

x [xl”‘xl”’ -xp’x’,“’ - 2t2x(2k)x(4*)] (18) 
d#;+ 1) 

Vi+ II 
dr ‘* ’ 

dyp+ ‘) 1 
~=r[_Y~+l’+RP(x(~+“yr+” 

dT 

-2x~+‘)y(~+‘))+3R2Pr2x1”+1)(X~+1))2] 

-2RP(xy+“)* ; 

dy’,k+” 1 
__ = r [( _ 1 + RPx\~+ ” )y’,“+ ‘I- 2y\k+ ‘1 

dr 

-8RP(xr+‘97 + +RP[x':f “x:*‘” 

+3Rt,(x(;+ ‘))*x$‘+‘)] (19) 

where xl”“’ and yj’+ ‘) for i = 1,2,3,4 are the (k+ 1)th 
approximations to the solutions of the differential equations 
(1 1), (13) and (14). The kth approximations xi”) and ylt) are 
assumed to be a set of known approximate solutions. 

Boundary conditions (16) become 

x:“’ “(to) = -A, xik+ ‘I(&,) = 0, yf’ “(&,) = 0, 

yy+ “(50) = 0, x(?“‘(l) = -B, xY”)(l) = 0, 

yc;+ “(1) = 0, y:“’ “(I) = 0. (20) 
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The system of equations (I 8) and (19) is linear in xl” ‘) and 
yik+ I), respectively, thus the principle of superposition can 
be used to obtain the general solution. The initial conditions 
for .$“+ ‘) and yjk+ ‘I, respectively, are chosen as 

Pj*+‘@,) = (-A,O,O,O), Gj:+“(&) = (O,O,l,O), 

G::+ “(50) = (O,O,O, 1) (21) 

and 

Q!““(L) = (O,O,O,O), &(rLl) = (0, l,O,O), 
HI:+ “(50) = (0, o,o, 1). (22) 

In initial conditions (21) and (22) Pj’+‘)(<,) and 
Qi”+ I)(&,) are taken for the initial values of the particular 
solutions of equations (18) and (19) while Gus+‘), 
G$+‘)(r,) and Nj$+‘)(&,), Hj:+‘)(r,) are used for their 
homogeneous solutions, respectively. 

The general solutions of equations (18) and (19) can be 
obtained as 

$k+ I’(<) = pjk+ 1’(&+ Cl”+“Gj$+ “(5) 

+ Cp” ‘)G!kq+ “(f) (23) 

and 

ylk+‘)(<) z Q~k+‘)(5)+D~+‘)HI:+‘)(S)+~P+‘)~~~+’)(5) 

(24) 

where Cp+ ‘I, C$’ ‘1, D$+‘) and Dv4 ‘) are unknown con- 
stants which can be determined by using boundary con- 
ditions (20) at < = 1. 

4. RESULTS, DISCUSSIONS AND 
CONCLUSIONS 

The system of equations (18) and (19) is solved numerically 
by the fourth-order RungeKutta method. The values of the 
functions j, f’, etc., jl, 4, $’ and 4’ have been computed for 
different values of R, A, B and rr correct to six decimal 
places. It is found that f,f’, etc. are in good agreement 
with their values obtained by Huang [6]. Hence, here we are 
confined only to the study concerned with the behaviour of 
the temperature profile for different values of R, A, B and 
r2. Without loss of generality, the permeability at any wall 
of the annulus is chosen to be negative (i.e. A,B > 0) with 
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FIG. 1. Variation of temperature T* with 5 for different values of Reynolds number R. 
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FIG. 2. Variation of temperature T* with 5 for different values of suction parameters A and B. 
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FIG. 3. Variation of temperature T* with 5 for different values of visco-inelastic number TV, 
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another wall of the annulus impermeable (i.e. A = 0 if it is inner wall of the annulus and decreases for r2 = 0.001 and 
inner wall and B = 0 if it is outer wall of the annulus). It 0.005 to that for r2 = 0 thereafter. It is also evident that there 
means there exists a suction cross flow either through the is more heating near the inner wall in case of Reiner-Rivlin 
inner wall or injection through the outer wall of the annulus. fluid than that for a Newtonian fluid. 

The convergence rate of the quasilinearization method is 
fairly fast, only a few iterations are needed to obtain a five 
digit accuracy. The method gives quite accurate results for 
moderately large values of Reynolds number up to the 
desired accuracy and hence may be very useful in solving 
two-point boundary value problems in the case of non-New- 
tonian fluids. 
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improvements on the original draft. Thanks are also due to 
the University Grants Commission, Government of India, 
for FIP fellowship to one of the authors (K.R.S.). 

The variation of the temperature profile at A = 1 .O, B = 0, 
rz = 0.02, [ = 0.4, P = 0.4, E = 1 for R = 0.1, 1, 10, 15,20 is 
represented in Fig. 1. It is evident that for small Reynolds 
number, temperature increases linearly with 5 throughout 
the annulus. In the case of moderately large Reynolds 
number, the temperature increases very rapidly at first and 
then starts decreasing rapidly thereafter. It is also seen that 
an increase in R increases the temperature very rapidly near 
the inner wall of the annulus while increases very slowly near 
the outer wall of the annulus. Hence there is a heating near 
the inner wall of the annulus which increases with an increase 
in R. 
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REVIEW OF THE LITERATURE 

IN 1985, Afgan et al. [1] conducted experiments for nucleate 
boiling of water, ethyl alcohol and Freon-l 13 using horizon- 
tal tubes covered with porous layers consisting of scintered 
dendrite shaped and spherical 633lOOpm particles. In one 
set of their experiments, the heat flux 4 vs the degree of 
superheat or ‘excess temperature’, AT,, was obtained for a 
16 mm diameter electrically heated tube covered by a 2.2 mm 
thick porous layer saturated with water. In this experiment, 
they observed that the boiling process can be divided into 
three regimes. In the first regime, called mode I, which 
corresponds to relatively small AT,, normal bubble boiling 
takes place. The second regime, called the transition regime, 

occurs at higher AT,. The investigators observed that, in the 
transition regime, the temperature difference increased by a 
large increment for a constant value of heat flux after a 
sufficiently long time interval. They attributed this phen- 
omenon to the slow growth of a vapor film through the 
porous layer. 

After the transition regime, a third regime, called mode 
II, starts. In this regime AT, increases with increasing heat 
flux, there is a vapor film inside the porous layer and nucleate 
boiling occurs at the outer surface of the porous layer. The 
transition from mode I to mode II can follow along different 
paths if the time necessary to achieve steady state is not 
allowed. Mode II persists until a boiling crisis or ‘burn out’ 
point is reached. 


